

Welcome to Pinax’s documentation

Pinax is an open-source platform built on the Django Web Framework.

By integrating numerous reusable Django apps to take care of the things
that many sites have in common, it lets you focus on what makes your
site different.

	Introduction

	Installation

	Customization

	Deployment

	Media Handling

	Group support

	Settings

	Dependencies

	FAQ

	Contributing

Release Notes

	current release notes

	all release notes

Documentation for Individual Apps

	External Apps

Introduction

Pinax is an open-source platform built on the Django Web Framework [http://djangoproject.com/].

By integrating numerous reusable Django apps to take care of the things
that many sites have in common, it lets you focus on what makes your
site different.

While our initial development was focused around a demo social
networking site, Pinax is suitable for a wide variety of websites. We
are working on number of editions tailored to intranets, event
management, learning management, software project management and more.

Features

At this stage, there is:

	openid support

	email verification

	password management

	site announcements

	a notification framework

	user-to-user messaging

	friend invitation (both internal and external to the site)

	a basic twitter clone

	oembed support

	gravatar support

	interest groups (called tribes)

	projects with basic task and issue management

	threaded discussions

	wikis with multiple markup support

	blogging

	bookmarks

	tagging

	contact import (from vCard, Google or Yahoo)

	photo management

and much more coming…

History and Background

You can learn more about the history and motivation for Pinax in an
interview with James Tauber on This Week in Django [http://thisweekindjango.com/twid/episode/24/this-week-in-django-24/] as well as his
talk on Pinax at DjangoCon 2008 [http://www.youtube.com/watch?v=1J91Ownq-7g] and talk on Pinax at PyCon 2009 [http://pycon.blip.tv/file/1952623/].

Installation

This covers installation from a release bundle. For information on installing
a development version, see http://pinaxproject.com/docs/dev/contributing.html.

The release bundle has almost everything you need to get Pinax up and running.
The only things not included are Python [http://python.org] itself, the Python Imaging Library [http://www.pythonware.com/products/pil/]
(PIL) and a database such as SQLite (which is included in Python 2.5+).

For more information on installing PIL, see Installing PIL.

Note

If you are on Mac OS X, make sure you have the Apple developer tools
installed before proceeding with Pinax installation.

Installing Pinax

Pinax makes use of Python virtual environments (or virtualenvs) to isolate
the various packages it uses from the rest of your system. Pinax comes with a
script that will create the virtualenv for you and install Django and the
various applications and libraries that make up Pinax.

To run this script, extract the release bundle, cd into it and run:

$ python scripts/pinax-boot.py <path-to-virtual-env-to-create>

This will set up the virtualenv and install everything.

For example, if you wanted to create your environment in a directory parallel
to where you extracted the bundle you could run:

$ python scripts/pinax-boot.py ../pinax-env

If you use virtualenvwrapper [http://www.doughellmann.com/projects/virtualenvwrapper/] (which we recommend), this would become:

$ python scripts/pinax-boot.py $WORKON_HOME/pinax-env

Activating the virtualenv

Any time you work on a project involving Pinax, you will want to activate
the virtualenv.

This is done with:

$ source <path-to-virtual-env-created>/bin/activate

or, in our example above using ../pinax-env:

$ source ../pinax-env/bin/activate

On Windows you would run:

$..\pinax-env\Scripts\activate.bat

With virtualenvwrapper, this becomes:

$ workon pinax-env

which you can run from anywhere on your filesystem.

Note that you will develop your Pinax-based project in a directory outside
your virtualenv. As long as the virtualenv is active, your project will have
access to all of the apps and libraries Pinax provides.

Starting a new Pinax project

The recommended way to start a new Pinax-based project is to clone one of the
existing projects. This is done via the pinax-admin clone_project
command which you can run once you are in your Pinax virtual-env.

You can get a list of available projects with:

(pinax-env)$ pinax-admin clone_project -l

This will show you a list of projects that you can base your new project on.

Just as quick demonstration, let’s start with the social_project. cd into the
directory you’d like to create your new project in and run:

(pinax-env)$ pinax-admin clone_project social_project mysite

This will create a new Pinax project called ‘mysite’ in your current working
directory.

Note

We recommend you don’t clone projects into the pinax-env (the virtual
environment) directory. This directory is best left for only the
environment isolated away from your project. This enables you to:

	version your project separately from your Pinax environment

	blow away / upgrade your Pinax environment / try different Pinax versions,
etc without affecting your project

Lastly, let’s get it running:

(pinax-env)$ cd mysite/
(pinax-env)$ python manage.py syncdb
(pinax-env)$ python manage.py runserver

Point your browser at http://localhost:8000/ and you should see the Pinax
default homepage!

Note that mail and some notifications are queued rather than delivered
immediately. See Sending Mail and Notices for details.

What’s next?

Look at our customization documentation to learn how you
might customize your cloned project. If you are ready to deploy your project
check out the deployment documentation.

Customization

As more sites are built using Pinax, more best practices will emerge, but for
now what we recommend is:

	Always work off a stable release. The most current release is 0.7beta3.

	Use the pinax-admin clone_project command.

	Make necessary changes to the settings.py and urls.py files in your
copied directory.

	Change the domain and display name of the Site in the admin interface.

	Develop your custom apps under your new project or anywhere on Python path.

	Develop your own templates under your new project.

Choosing a Project

Pinax provides several projects to use as a starting point for
customization. Depending on your development style, you may prefer one project
over the other.

	basic_project

	This project comes with the bare minimum set of applications and templates to
get you started. It includes no extra tabs, only the profile and notices tabs are
included by default. From here you can add any extra functionality and
applications that you would like.

	cms_project_company

	A very simple CMS that lets you set up templates and then edit content,
including images, right in the frontend of the site.

The sample media, templates and content including in the project demonstrate
a basic company website.

	cms_project_holidayhouse

	A very simple CMS that lets you set up templates and then edit content,
including images, right in the frontend of the site.

The sample media, templates and content including in the project demonstrate
a basic site for holiday house rentals.

	code_project

	This project demonstrates group functionality and the tasks, wiki and topics
apps. It is intended to be the starting point for things like code project
management where each code project gets its own wiki, task tracking system
and threaded discussions.

	intranet_project

	This project demonstrates a closed site requiring an invitation to join and
not exposing any information publicly. It provides a top-level task tracking
system, wiki and bookmarks. It is intended to be the starting point of sites
like intranets.

	private_beta_project

	This project demonstrates the use of a waiting list and signup codes for
sites in private beta. Otherwise it is the same as basic_project.

	sample_group_project

	This project demonstrates group functionality with a barebones group
containing no extra content apps as well as two additional group types,
tribes and projects, which show different membership approaches and
content apps such as topics, wiki, photos and task management.

	social_project

	This project demonstrates a social networking site. It provides profiles,
friends, photos, blogs, tribes, wikis, tweets, bookmarks, swaps,
locations and user-to-user messaging.

In 0.5 this was called complete_project.

pinax-admin clone_project

Pinax provides you with pinax-admin, a command line utility. With
pinax-admin you can quickly generate a cloned project. For example, if you
wanted to clone the basic_project you could simply do the following:

(pinax-env)$ pinax-admin clone_project basic_project mysite

Settings You Will (Possibly) Want To Override

Pinax-specific:

	PINAX_THEME

	CONTACT_EMAIL

	URCHIN_ID

	BBAUTH_APP_ID

	BBAUTH_SHARED_SECRET

	SITE_NAME

	MAILER_PAUSE_SEND

	SERVE_MEDIA

	ACCOUNT_OPEN_SIGNUP

	ACCOUNT_REQUIRED_EMAIL

	ACCOUNT_EMAIL_VERIFICATION

	EMAIL_CONFIRMATION_DAYS

	LOGIN_REDIRECT_URLNAME

General to Django:

	DEBUG

	TEMPLATE_DEBUG

	LOGGING_OUTPUT_ENABLED

	ADMINS

	MANAGERS

	DATABASE_ENGINE

	DATABASE_NAME

	DATABASE_USER

	DATABASE_PASSWORD

	DATABASE_HOST

	TIME_ZONE

	SECRET_KEY

	DEFAULT_FROM_EMAIL

	SERVER_EMAIL

	SEND_BROKEN_LINK_EMAILS

	EMAIL_HOST

	EMAIL_HOST_USER

	EMAIL_HOST_PASSWORD

	EMAIL_SUBJECT_PREFIX

	LOGIN_URL

base.html versus site_base.html

In the sample projects, templates/base.html is intended for overall page structure
whereas templates/site_base.html is intended for adding site-specific content that
is to be found on all pages (things like logo, navigation or footers).

If you are writing a theme to be used across multiple sites, you should modify
base.html, not site_base.html. If you want to keep a particular theme
but modify content for a specific site, you should modify site_base.html.

Changing Avatar/Gravatar defaults

By default Pinax assigns to users the Gravatar [http://gravatar.com/] icon and uses the Gravatar icon
system. If you want your own personal site avatar default, simply go to the
settings.py in your project root and add these two lines of code:

avatar controls
AVATAR_DEFAULT_URL = MEDIA_URL + '<our_custom_avatar.jpg>'
AVATAR_GRAVATAR_BACKUP = False

Adding Tabs

See Tab Navigation

Deployment

In short:

	Create a local_settings.py alongside settings.py for your
host-specific settings (like database connection, email, etc).

	Configure mod_wsgi or mod_python.

	Set up cron job for mailer and asynchronous notifications.

Using mod_wsgi

If you are using mod_wsgi, which we recommend, you will need to provide a WSGI
script. All projects include a deploy/ directory which contains this
script named pinax.wsgi. You may modify this file as it best suits you.

Here is a basic configuration for Apache (assuming you are using Python 2.5):

WSGIDaemonProcess mysite-production python-path=/path/to/virtualenvs/pinax-env/lib/python2.5/site-packages
WSGIProcessGroup mysite-production

WSGIScriptAlias / /path/to/project/deploy/pinax.wsgi
<Directory /path/to/project/deploy>
 Order deny,allow
 Allow from all
</Directory>

The above configuration will likely need to be modified before use. Most
specifically make sure the python-path option points to the right Python
version. We encourage you to read about WSGIDaemonProcess [http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIDaemonProcess] to learn more
about what you can configure.

Using mod_python

While we highly recommend you use mod_wsgi you may need to use mod_python. In
this case we have provided the correct hooks for you to use Pinax. Here is a
sample Apache config that you can use:

<Location "/">
 SetHandler python-program
 PythonHandler social_project.deploy.modpython
 SetEnv DJANGO_SETTINGS_MODULE social_project.settings
 PythonDebug On
 PythonPath "['/path/to/pinax/projects'] + sys.path"
</Location>

Note

It is important to note that you should pay careful attention to the
value of PythonHandler above. It is not using
django.core.handlers.modpython. It is using a mod_python handler
located in your project’s deploy/ directory. The reason why we have
our own mod_python handler is because we need to setup the Pinax
environment otherwise you will see failing imports.

Sending Mail and Notices

Both mail messages and (some) notifications are queued for asynchronous
delivery. To actually deliver them you need to run:

python manage.py send_mail

and:

python manage.py emit_notices

on a frequent, regular basis.

Because failed mail will be deferred, you need an additional, less
frequent, run of:

python manage.py retry_deferred

We recommend setting up some scripts to run these commands within your
virtual environment. You can use the following shell script as the basis for
each management command:

#!/bin/sh

WORKON_HOME=/home/user/virtualenvs
PROJECT_ROOT=/path/to/project

activate virtual environment
. $WORKON_HOME/pinax-env/bin/activate

cd $PROJECT_ROOT
python manage.py send_mail >> $PROJECT_ROOT/logs/cron_mail.log 2>&1

Let’s assume the scripts you create from above are stored in
$PROJECT_ROOT/cron. You can now setup the cron job similar to:

* * * * * /path/to/project/cron/send_mail.sh
* * * * * /path/to/project/cron/emit_notices.sh

0,20,40 * * * * /path/to/project/cron/retry_deferred.sh

This runs send_mail and emit_notices every minute and
retry_deferred every 20 minutes.

Media files

Pinax makes it very easy to combine all your applications’ media files into
one single location (see Media Handling for details). Serving them more or
less comes down again to how you do it with Django itself.

There is an example on how to serve those files with the development server in
Serving static files during development.

In a production environment you, too, have to merge those files before you can
serve them. Regarding actually serving those files then, see Django’s
deployment documentation [http://docs.djangoproject.com/en/dev/howto/deployment/] for details.

Media Handling

This document explains how Pinax handles media files across external and
internal applications and themes.

Basic media handling

If you want to override default media files, place yours under
<project_name>/media/… with the same path. For example:

Original file:

src/pinax/media/default/pinax/images/logo.png

Your file:

<project_name>/media/pinax/images/logo.png

Locations of media files

If you want to use Pinax’ media handling with your own Django apps, please
make sure you put the media files like JavaScript, cascading stylesheets (CSS)
and images in the following directory structure:

<app_name>/media/<app_name>/(js|img|css)

Doubling your <app_name> is required to prevent name collision of media files
while deploying.

Site specific media files goes to:

<project_name>/media/siteExample.js

The special static file service view should be able to serve the media files in
development.

build_media management command

The build_media script collects the media files from Pinax and all the
installed apps and arranges them under the
<project_name>/site_media/static folder.

The command:

<project_name>/python manage.py build_media --all

will collect the media files from Pinax and all the apps and places them in
the folder defined in the STATIC_ROOT setting.

If you have two apps with the same file and the same relative path it’s advised
to use the --interactive option so the script will prompt you to choose
which one to use. This is useful in case you want to overwrite default media
files with your custom app for example. Remember to remove the site_media
folder before you use this option or the script will prompt you for each file.

Please also refer to the help of the build_media management command by running:

<project_name>/python manage.py build_media --help

resolve_media management command

To quickly resolve the full file path of a media file on the filesystem,
you can pass its expected URL path(s) to the resolve_media management
command, e.g.:

$./manage resolve_media pinax/css/base.css
Resolving css/site_tabs.css:
 /Users/jtauber/virtualenvs/mysite/lib/python2.6/site-packages/Pinax-0.7beta3-py2.6.egg/pinax/media/default/pinax/css/base.css

If multiple locations are found which match the given path it will list all of
them, sorted by its importance.

Serving static files during development

Pinax provides the static file serving view staticfiles.views.serve to
handle the app and theme media as well as other media files found in the
MEDIA_ROOT directory. Make sure your projects’ urls.py contains the
following snippet below the rest of the url configuration:

from django.conf import settings
if settings.SERVE_MEDIA:
 urlpatterns += patterns('',
 (r'^site_media/', include('staticfiles.urls')),
)

Group support

Group support in Pinax allows you to define any type of group. Pinax comes
bundled with two types of groups:

	tribes — used in social_project

	projects — used in code_project

A group app can have any content object associated with it. Pinax includes
several apps that are group aware:

	tasks

	photos

	wiki

	topics

The idea is a group aware app has the ability to work with or without a group
association. This is done using a nullable generic foreign key. Pinax comes
with an app to do much of the work to make this all happen.

Writing your own group aware domain objects

If you want to write your own domain object that is group aware start an app
for it. Follow the guidelines below and you’ll be all set.

Models

Let’s look at a basic model that stores data for a blog:

class Blog(models.Model):

 name = models.CharField(max_length=140)

To enable group support for this minimal domain object add in a nullable
generic foreign key:

from django.db import models

from django.contrib.contenttypes import generic
from django.contrib.contenttypes.models import ContentType

class Blog(models.Model):

 name = models.CharField(max_length=140)

 object_id = models.IntegerField(null=True)
 content_type = models.ForeignKey(ContentType, null=True)
 group = generic.GenericForeignKey("object_id", "content_type")

We use a nullable generic foreign key to enable it to be optional and we don’t
know what group model it will point to.

Views

The views you write for your app need to be aware there may be a group
association. This is to ensure you properly work with the right subset of
data from your models.

Let’s take a look at a view that would be a bit naive:

def blog_list(request):

 blogs = Blog.objects.all()

 return render_to_response("blog/blog_list.html", {
 "blogs": blogs,
 }, context_instance=RequestContext(request))

Assuming Blog is the first model presented above this will work fine.
However, once you introduce the generic foriegn key you will potentially be
selecting objects that don’t belong.

To deal with situation we introduced a ContentBridge object. This object
is passed to your view from the layer above. Let’s see how to work with it:

from django.http import Http404
from django.template import RequestContext
from django.shortcuts import render_to_response
from django.core.exceptions import ObjectDoesNotExist

def blog_list(request, group_slug=None, bridge=None):

 if bridge is not None:
 try:
 group = bridge.get_group(group_slug)
 except ObjectDoesNotExist:
 raise Http404
 else:
 group = None

 if group:
 blogs = group.content_objects(Blog)
 else:
 blogs = Blog.objects.all()

 return render_to_response("blog/blog_list.html", {
 "group": group,
 "blogs": blogs,
 }, context_instance=RequestContext(request))

Pretty straight-foward code to handle both group and no group association.
If you are writing an app that can guarantee group association you can
definitely make it simpler.

Checking for user membership

In many cases you might want to check if the authenticated user has membership
in the group. To do this:

if not request.user.is_authenticated():
 is_member = False
else:
 is_member = group.user_is_member(request.user)

URLs

The urls.py file of your app will not need anything special. Most of that
is handled by Pinax. However, URL reversal needs to be group aware. We have
some helpers to help you work with this easily.

Let’s say you have the following urls.py:

from django.conf.urls.defaults import *

urlpatterns = patterns("",
 url(r"^blogs/$", "blog.views.blog_list", name="blog_list"),
 url(r"^blog/(?P<slug>[-\w]+)/$", "blog.views.blog_detail", name="blog_detail"),
)

To ensure URLs to blog_list are correctly generated you will need to use
reverse located on the ContentBridge object:

def some_view_with_redirect(request, bridge=None):
 ...
 return HttpResponseRedirect(bridge.reverse("blog_list", group))

The reverse method work almost identical to Django’s reverse. It is
essentially a wrapper. To reverse the blog_detail URL:

blog = Blog.objects.get(pk=1)
bridge.reverse("blog_detail", group, kwargs={"slug": blog.slug})

Note

You should be aware that only kwargs work with the bridge reverse.
This is significant because URLs with args mapping will fail reversal.
The reason behind this is because Django does not allow mixing of args
and kwargs when performing URL reversal.

There are some cases when you don’t have easy access to the ContentBridge.
You may only have access to a domain object instance. You can get access to
the ContentBridge from the instance. For example:

blog = Blog.objects.get(pk=1)
blog.content_bridge.reverse(...)

URL reversal in templates

In Django you may be familiar with the {% url %} templatetag. This is
basically a wrapper around reverse. We provide a similar tag, but works
with our ContentBridge.reverse. Here is how you might use it:

{% load group_tags %}

{{ blog.name }}

The {% groupurl %} templatetag will fall back to normal Django URL reversal
if the value of the passed in group is None. This enables the ability
to work with no group association.

Writing your own group app

Hooking up content objects

Settings

Depending on what profile and which apps out of it you’re using with your
Pinax project you have a collection of options for your settings.py at
your disposal. This listing only includes those that are supported by the
internal applications or are used in the sample project settings (excluding
those that are already described by Django’s settings reference [http://docs.djangoproject.com/en/dev/ref/settings/]. If you
want to know the available settings for any of the external apps, please refer
to its docoumentation.

ACCOUNT_OPEN_SIGNUP

	Applications

	pinax.apps.signup_codes

This setting lets you configure whether the site should allow new users to
register accounts if they don’t provide any kind of signup code.

BBAUTH_APP_ID

	Applications

	pinax.apps.bbauth

This setting is used to allow auth through Yahoo!’s Browser-Based Authentication service [http://developer.yahoo.com/auth/].

BBAUTH_SHARED_SECRET

	Applications

	pinax.apps.bbauth

This setting is used to allow auth through Yahoo!’s Browser-Based Authentication service [http://developer.yahoo.com/auth/].

BEHIND_PROXY

	Applications

	pinax.apps.blog

If your site is behind a proxy server, set this setting accordingly so that
the users’ real IP addresses are stored when they create blog posts. When
activated the blog takes the user’s IP addresse from
request.META['HTTP_X_FORWARDED_FOR'] instead of
request.META['REMOTE_ADDR'].

COMBINED_INBOX_COUNT_SOURCES

	Applications

	pinax.apps.misc

With this setting you can specify a list applications that write to the users
inbox in order to get the current inbox count for the current user. In fact
you don’t specify the application but a context processor function which you
specify here. If you for example create a project based on the
social_project template, the messages, notification and
friends_app all provide information that affects the inbox count.

Such a context processor should return a dictionary with one or more entries
for the additional inbox count.

EMAIL_CONFIRMATION_DAYS

	Applications

	emailnotification (external [http://github.com/jtauber/django-email-confirmation/])

This way you can configure the number of days, confirmation email should be
valid. For further details please see the documentation of the application
itself.

FEEDUTIL_SUMMARY_LEN

	Applications

	feedutil (external [http://code.google.com/p/django-feedutil/])

	Default

	150

Number of characters used for summary-attributes in feeds.

FORCE_LOWERCASE_TAGS

	Applications

	tagging (external [http://code.google.com/p/django-tagging/])

	Default

	False

If set to True all tags will first be converted to lowercase before they
are saved to the database.

LOGIN_REDIRECT_URLNAME

	Applications

	pinax.apps.account

This setting is used by pinax.apps.account and allows you to specify the
name of a named URL as redirection target. If it is not set,
LOGIN_REDIRECT_URL will get used instead.

NOTIFICATION_LANGUAGE_MODULE

	Application

	notification (external [http://github.com/jtauber/django-notification/])

	Default

	False

This way you can specify what model holds the language selection of a specific
user – e.g. account.Account. The model has to have a foreign key to the
the user model (user) and also provide a language field, which is then
used by the notification application.

PINAX_ITEMS_PER_FEED

	Applications

	pinax.apps.blog

	Default

	20

With this option the number of posts that should be served in the feeds
generated by Pinax’ blogging application can be configured.

PINAX_ROOT

	Application

	pinax.apps.staticfiles

Normally you shouldn’t need to change this setting. It’s a reference to where
Pinax itself is installed so that you can easily re-use for instance templates
from that location or work with the original static files like
the build_media command does. There this settng is used to find the
media files of those internal applications used in your project, which are
then copied into one central location.

For more on this topic take a look at Media Handling.

It is also used by default in project settings for determining a template
directory.

PINAX_THEME

	Applications

	

	Default

	"default"

With Pinax your site can have multiple themes available. This option now
determines, which one of these should be used. In practice the value of
PINAX_THEME becomes part of the file-paths the build_media command is
looking for when trying to combine all your media files into one single
location. A small example:

src/pinax/media/default/pinax/images/logo.png

is a file that is specific to the “default” theme for Pinax while:

src/pinax/media/new_hotness/pinax/images/logo.png

would only be available in the “new_hotness” theme.

This setting is also used for the core templates that are provided with Pinax
by default. The default settings.py files provided by Pinax for instance
load templates from following locations:

TEMPLATE_DIRS = (
 os.path.join(os.path.dirname(__file__), "templates"),
 os.path.join(PINAX_ROOT, "templates", PINAX_THEME),
)

Note that this setting only applies to Pinax’ core media files and templates
and is not used either in the internal nor the external apps by default.

RESTRUCTUREDTEXT_FILTER_SETTINGS

	Applications

	pinax.apps.blog

	Default

	{}

Using this option you can pass additional settings as dictionary through the
restructuredtext template library to the underlying
docutils.core.publish_parts function.

SERVE_MEDIA

This option is used in the standard projects’ URLconf to determine, if
django.views.static.serve should be used to serve static files. By default
this settings is bound to the DEBUG setting in the default
settings.py.

STATICFILES_DIRS

	Default

	[]

This setting defines the additional locations the staticfiles app will
traverse when looking for media files, e.g. if you use the
build_media or
resolve_media management command or
use the static file serving view.

It should be defined as a sequence of (label, path) tuples, e.g.:

STATICFILES_DIRS = (
 ('pinax', os.path.join(PINAX_ROOT, 'media', PINAX_THEME)),
 ('my_project', os.path.join(PROJECT_ROOT, 'media')),
)

STATICFILES_PREPEND_LABEL_APPS

	Default

	('django.contrib.admin',)

A sequence of app paths that have the media files in <app>/media, not in
<app>/media/<app>, e.g. django.contrib.admin.

STATICFILES_MEDIA_DIRNAMES

	Default

	('media',)

A sequence of directory names to be used when searching for media files in
installed apps, e.g. if an app has its media files in <app>/static
use:

STATICFILES_MEDIA_DIRNAMES = (
 'media',
 'static',
)

URCHIN_ID

	Applications

	pinax.apps.analytics

Used by pinax.apps.analytics as part of your account information on Google
Analytics [http://analytics.google.com/]. Based on this setting the JavaScript is generated that is then
embedded into your website to allow Google Analytics to track your traffic.

MARKUP_CHOICES

	Applications

	pinax.apps.blog, pinax.apps.tasks

	Default

	(('restructuredtext', u'reStructuredText'), ('textile', u'Textile'), ('markdown', u'Markdown'), ('creole', u'Creole'),)

The actual origin of this setting is django-wikiapp [http://code.google.com/p/django-wikiapp/] which is one of the
external applications Pinax integrates. pinax.apps.blog uses it to
determine, how a post’s content should be converted from plain text to HTML.

WIKI_REQUIRES_LOGIN

	Applications

	wiki (external [http://code.google.com/p/django-wikiapp/])

	Default

	False

With this setting you configure the Wiki to be only accessible to people who
are logged in.

Dependencies

This documents what apps use what other apps and what external libs.

	account

	uses apps misc, emailconfirmation, friends, profiles, timezones, microblogging

	ajax_validation

	uses library simplejson

	announcements

	uses app notification
and library atomformat

	authsub

	uses library gdata

	avatar

	uses library PIL

	basic_profiles

	uses app notification

	bbauth

	uses library ybrowserauth

	blog

	uses apps friends, notification, tagging, threadedcomments
and library atomformat

	bookmarks

	uses apps tagging, voting
and library atomformat

	misc

	uses apps blog, bookmarks, mailer, tribes, microblogging, voting

	django_extensions

	uses a wide range of libraries depends on command

	django_openid

	uses libraries openid, yadis

	djangologging

	uses library pygments

	emailconfirmation

	uses app mailer

	friends

	uses apps emailconfirmation, mailer, notification
and libraries gdata, simplejson, vobject, ybrowserauth

	friends_app

	uses apps account, friends, notification

	messages

	uses app mailer, notification

	notification

	uses app mailer
and library atomformat

	oembed

	uses library simplejson

	photologue

	uses app tagging
and library PIL

	photos

	uses apps photologue, projects, tagging, tribes

	profiles

	uses apps account, friends, gravatar, notification, photos, timezones, microblogging

	projects

	uses apps friends, notification, photos, tagging, things, threadedcomments, wiki

	swaps

	uses apps notification, tagging, threadedcomments

	tag_app

	uses apps blog, bookmarks, photos, projects, tagging, tribes, wiki

	timezones

	uses library pytz

	tribes

	uses apps friends, notification, photos, tagging, things, threadedcomments, wiki, microblogging

	wiki

	uses apps notification, tagging
and libraries atomformat, creoleparser, diff_match_patch, docutils

	microblogging

	uses apps account, notification, tribes
and libraries atomformat, twitter

Frequently asked questions

Does Pinax work on Django 1.1?

Yes. Pinax 0.7 ships with Django 1.0.4 by default. Django 1.1 came too late in
our 0.7 release cycle. However, we tested it on Django 1.1 to ensure it works
and it works well. To use Django 1.1 in your Pinax project simply follow our
installation documentation and once you are in the
virtual environment run:

pip install -U Django==1.1.1

This will install Django 1.1.1 over 1.0.4.

Does Pinax work on Django 1.2?

Yes and no. Our stable release 0.7.X (at 0.7.1) does not support Django 1.2.
We will attempt to make 0.7.2 compatible to run on Django 1.2. Installing
Django 1.2 over 1.0 that ships with 0.7 will work the same way as seen above.
We hope to release 0.7.2 soon. There are no timelines.

On the other hand our development version of Pinax will ship with Django 1.2.
Stay tuned for more news regarding the releases of 0.9.

How do I change the references to example.com

example.com is the default value for
Site.objects.get(pk=settings.SITE_ID).domain. This comes from the Django
contrib app named sites. It is enabled in Pinax by default. Pinax uses
this value to construct URLs back to your site in e-mails, for example. There
are two ways to change this value. First, you can modify it in the shell
(using python manage.py shell):

>>> from django.conf import settings
>>> from django.contrib.sites.models import Site
>>> site = Site.objects.get(pk=settings.SITE_ID)
>>> site.domain = "localhost:8000"
>>> site.name = "Development site"
>>> site.save()

Alternatively, you can perform the same action through the admin interface.

[image: _images/admin_sites_change.jpg]

Why won’t my e-mail send?

Pinax queues all e-mail for delivery. This is the behavior of django-mailer.
All messages are stored in the database. This enables you to view what will
be sent via the admin during development.

[image: _images/admin_mailer_messages.jpg]

To send the messages that are queued you should use the send_mail
management command. To invoke this you would run:

python manage.py send_mail

Be sure you have set the appropriate EMAIL_* settings. A full list of
these settings can be found in Django settings documentation [http://docs.djangoproject.com/en/dev/ref/settings/#email-host]. Our
deployment documentation gives
instructions on how to set this up on a cron.

Also, some e-mail may occur as a result of notifications. Some notifications
are queued. Be sure you run:

python manage.py emit_notices

to clear the notification queue and get those e-mails queued.

Contributing to Pinax

We are always looking for people wanting to improve Pinax itself. This
document outlines the necessary bits to begin contributing to Pinax.

Getting started

The Pinax source code is hosted on GitHub [http://github.com/pinax/pinax/tree/master]. This means you must have git [http://git-scm.com]
installed locally. We recommend you create an account on GitHub allowing you
to watch and fork the Pinax source code.

You will want to be sure that your git configuration is set for making commits
to a repository. Check the following:

git config user.name
git config user.email

If the output of any of the two commands above are not entirely correct you
can easily correct them:

git config --global user.name "First Last"
git config --global user.email "email@somewhere.com"

It is critical you set this information up correctly. It helps us identify
who you are when you start giving us those awesome patches.

Grabbing the source code

Once you have forked the Pinax source code you can now make a clone of it to
your local disk. To do this:

git clone git@github.com:<username>/pinax.git

This will create new directory named pinax which now contains the Pinax
source tree ready for you to get started.

Setting up your environment

Now that you’ve cloned the source code you are ready to get your environment
setup to work on Pinax. This section also applies if you are looking to just
run off the latest code. We’ll assume that your current working directory is
from within the clone (the pinax directory):

python scripts/pinax-boot.py --development --source=. ../pinax-dev
source ../pinax-dev/bin/activate

If you use virtualenvwrapper you could alternatively do:

python scripts/pinax-boot.py --development --source=. $WORKON_HOME/pinax-dev
workon pinax-dev

Finally, you need to install the dependencies for the development version:

pip install --requirement requirements/external_apps.txt

Committing code

The great thing about using a distributed versioning control system like git
is that everyone becomes a committer. When other people write good patches
it makes it very easy to include their fixes/features and give them proper
credit for the work.

We recommend that you do all your work on Pinax in a separate branch. When you
are ready to work on a bug or a new feature create yourself a new branch. The
reason why this is important is you can commit as often you like. When you are
ready you can merge in the change. Let’s take a look at a common workflow:

git checkout -b task-1-work
... do work and git commit often ...
git push origin task-1-work
git checkout -b task-1
git merge --squash --no-commit task-1-work
git commit -m "Fixed #1 — added a great new feature"
git push origin task-1

The reason we have created two new branches is to stay off of master.
Keeping master clean of only upstream changes makes yours and ours lives
easier. You can then send us a pull request for the fix/feature from the
“ready” branch. Then we can easily review it and even take a look at the
individual commits for why you may have done something. If we say that
you’ve done something slightly wrong you can now go back to the task-1
branch and correct it. Let’s see how we might do this:

git checkout -b task-1-work
... fix and git commit often ...
git push
git branch -D task-1
git checkout -b task-1
git merge --squash --no-commit task-1-work
git commit -m "Fixed #1 — added a great new feature"
git push

Send another pull request and we can review the fix.

Writing commit messages

Writing a good commit message makes it simple for us to identify what your
commit does from a high-level. We are not too picky, but there are some basic
guidelines we’d like to ask you to follow.

Fixed #1 — added some feature

We ask that you indicate which task you have fixed (if the commit fixes it) or
if you are working something complex you may want or be asked to only commits
parts:

Refs #1 — added part one of feature X

As said earlier we are not too picky (some core developers may change commit
messages before pulling in your changes), but as you get the basics down you
make the process of getting your patch into core faster.

Another critical part is that you keep the first line as short and sweet
as possible. This line is important because when git shows commits and it has
limited space or a different formatting option is used the first line becomes
all someone might see. If you need to explain why you made this change or
explain something in detail use this format:

Fixed #13 — added time travel

You need to be driving 88 miles per hour to generate 1.21 gigawatts of
power to properly use this feature.

External Apps

The majority of functionality in Pinax is provided by external, reusable
Django apps.

Index

Buildout

Intro

The de facto Pinax [http://pinaxproject.com/] build process has a couple manual steps but the
bulk of the work is done by the pinax-boot.py script. The 0.7
series introduced the use of pip [http://pypi.python.org/pypi/pip] which installs python parts into the
site-packages directory, presuming a virtualenv [http://pypi.python.org/pypi/virtualenv] to avoid
polluting the system python.

Many folks like using zc.buildout [http://pypi.python.org/pypi/zc.buildout], a generic tool frequently used to
build projects, especially when there are a number of components
involved. It came from the Zope [http://www.zope.org/] world and is heavily used by the Plone [http://plone.org/]
community for building sites. Rather than installing libraries into
site-packages, interpreters and running systems have their sys.path
set to include all the eggs and libraries and parts as required by the
buildout definitions.

The Django [http://www.djangoproject.com/] community has typically not been big on using buildout [http://www.buildout.org/],
but recently Jacob Kaplan-Moss has written a couple [http://jacobian.org/writing/django-apps-with-buildout/] enthusiastic
tutorials [http://jacobian.org/writing/more-buildout-notes/] on how to use it.

Pinax has many many components so it seems a natural candidate for
buildout.

Virtualenv (optional)

In the bad old days developers installed libraries into the system
Python’s site-packages; your operating system packager may have
done the same thing for their own needs. This of course leads to
problems akin to “DLL Hell”, with different applications needing
different libraries or versions.

Virtualenv creates a private copy of your python with its own
site-packages directory so you can install as a normal user and each
project can have it’s own set of libraries.

I tend to install a very minimal set of critical tools into my system
python: setuptools and virtualenv. All my application’s libraries are
installed into the running code’s sys.path by buildout, so I don’t end
up with conflicts.

If, however, you do keep a bunch of libraries in your system
site-packages, they will be visible to an application you create with
buildout – buildout doesn’t isolate you from site-packages [why
not? [http://svn.zope.org/zc.buildout/trunk/buildout.cfg?rev=97819&view=rev]]. It’s safest to create a virtual environment:

virtualenv --no-site-packages .

The dot indicates to create the virtualenv in this current directory,
where our Pinax build will be done. Then activate it:

source bin/activate

Now when you say “python” it should get your private python.

Building

Before you can start to bootstrap the buildout you need to get the necessary
files by cloning the Git repository pinax-buildout [http://github.com/pinax/pinax-buildout/]:

$ git clone git://github.com/pinax/pinax-buildout.git

Since it’s a good idea to create a new buildout for each Pinax based project
don’t hesitate to rename the pinax-buildout directory to your liking.

Bootstrap

If you created and activated a virtual python, or want to use the
system one that’s on your PATH, bootstrap the buildout:

$ python bootstrap.py

If you create a private python or need to use a specific one (e.g., a
non-default python version) do something like:

$ /path/to/specific/python bootstrap.py

This creates the bin/buildout command used next:

Creating directory '/path/to/pinax-buildout/bin'.
Creating directory '/path/to/pinax-buildout/parts'.
Creating directory '/path/to/pinax-buildout/eggs'.
Creating directory '/path/to/pinax-buildout/develop-eggs'.
Generated script '/path/to/pinax-buildout/bin/buildout'.

You should only need to do this once, before you run your buildout.

Buildout

Now you can run the buildout. It uses the configuration buildout.cfg
file to drive the build. You can create layered buildout config files,
like for the project base then variants for development and
deployment, but we’ll only worry about a single configuration here.

The buildout.cfg file specifies various parts and
dependencies. Run the buildout with a bit of verbosity like:

$ bin/buildout -v

Installing 'zc.buildout', 'setuptools'.
...
Generated script '/path/to/pinax-buildout/bin/ipython'.
Generated script '/path/to/pinax-buildout/bin/pinax-admin'.
Generated script '/path/to/pinax-buildout/bin/django-admin'.

Since our buildout.cfg specifies a lot of pieces needed by Pinax,
this can take a little time the first time its run. Subsequent times
should take less time.

I’ve specified parts in the buildout to build pieces that can be a bit
troublesome, specifically PIL [http://www.pythonware.com/products/pil/] and the zlib [http://www.zlib.net/] that it depends on.

When finished, the buildout creates a bin/django-admin command that’s
analogous to Django’s django-admin.py. It also creates a
bin/pinax-admin script to call
clone_project for example.

You will need to re-rerun this if you modify the buildout.cfg –
perhaps to add other components your application needs.

Running

After your buildout completes, you can use the bin/django-admin commands
as to initialize your database and run your site.

Syncdb

At this point you should have the bin/pinax command and be able to
create your database from the Pinax models:

$ bin/django-admin syncdb

Runserver

Then you can run your application:

$ bin/django-admin runserver

Python Interpreter

The buildout also creates a python interpreter that has all the eggs
and libraries configured into it, which you can run like:

$ bin/python

Developer Code Repository Workflow

There is a different “workflow” for developers with Commit privilege
and those without.

Developers with Commit Privileges

[TBD]

Developers without Commit Privileges

Login to http://github.com and search for Pinax or go directly here:

http://github.com/pinax/pinax/tree/master

Getting the code

Use the ‘fork’ button to fork the Pinax tree to your area. This
invokes a “Hardcore Forking Action”.

Grab the “Your Clone” URL from the page, using the Flash button if you
have Flash. It gives you something like this:

git@github.com:yourusername/pinax.git

Clone this to your computer: in the current pinax-boot installation,
cd to src/ and then:

git clone git@github.com:yourusername/pinax.git

Push your changes back

Do your development in src/pinax, test, later, rinse, repeat. When
you’re satisfied with your changes, git commit them to your local
repository copy and send it back up to your fork on Github:

git push

When you’re ready for the committers to review your changes for
acceptance, go to your fork on Github (e.g.,
http://github.com/yourusername/pinax/tree/master) then hit the “pull
request” button to notify the committers.

Keep in sync with the main pinax master

Add a name for the pinax master git location:

$ git remote add pinaxmaster git://github.com/pinax/pinax.git

This adds an entry to your existing local copy’s .git/config like:

[remote "pinaxmaster"]
 url = git://github.com/pinax/pinax.git
 fetch = +refs/heads/*:refs/remotes/pinaxmaster/*

Then pull from the master and merge changes in:

$ git pull pinaxmaster master

You may see merge conflicts like:

From git://github.com/pinax/pinax
* branch master -> FETCH_HEAD
Auto-merging docs/install.txt
CONFLICT (content): Merge conflict in docs/install.txt
Auto-merging requirements/external_apps.txt
CONFLICT (content): Merge conflict in requirements/external_apps.txt
Automatic merge failed; fix conflicts and then commit the result.

Now resolve the conflicts with your editor. You’ll need to git add
the files again before you can commit, push and issue pull
requests like above.

Installing PIL

To be able to run the social_project or any photo support provided with
Pinax you will need the Python Imaging Library [http://www.pythonware.com/products/pil/] (aka PIL). We don’t install
this for you because its installation will vary and requires compilation.
First, check with your OS package manager (if applicable) to see if it can
provide PIL for you. Windows users can simply use the binaries provided on the
PIL website.

This command has worked for some users; it installs a tweaked version:

(pinax-env)$ pip install http://dist.repoze.org/PIL-1.1.6.tar.gz

Of course you’ll need a C compiler libjpeg [http://freshmeat.net/projects/libjpeg/] and libz [http://www.zlib.net/] libraries upon which
PIL depends.

Tab Navigation

You can completely control the look and feel of your Pinax-based site
via the templates, so if you don’t like the way the tabs are done, you
can always do it a completely different way.

But this is how tab navigation is done in most of the sample projects.

Quick Start

Here is how to add a new tab for your app myapp:

	In site_base.html add a new li in the right_tabs block.
Make sure that li has and id specific to that to that tab,
e.g. tab_myapp

	Create a myapps/base.html template that all pages under that tab will
extend. Make sure it defines a block body_class with content
myapp

	edit the CSS file (site_tabs.css if it exists) and at the
appropriate points add the selectors:

	body.myapp #tab_myapp

	body.myapp #tab_myapp a

Details

The global base.html (under pinax/templates/default/) has the following:

	::

	…
<body class=”{% block body_class %}{% endblock %}”>

…
<div id=”tabhead”>

…
<div id=”left_tabs” >{% block left_tabs %}{% endblock %}</div>
<div id=”right_tabs” >{% block right_tabs %}{% endblock %}</div>

</div>
<div id=”subnav” class=”clearfix”>{% block subnav_base %}{% block subnav %} {% endblock %}{% endblock %}</div>

Note that this defines five blocks:

	body_class

	left_tabs

	right_tabs

	subnav

You shouldn’t normally need to change this at all for your site unless
you want to make a change like move where the subnav goes.

site_base.html in your project’s templates then overrides the left_tabs
and or right_tabs blocks with the actual site-wide tabs. For example, here is a
right_tabs with three tabs defined that only show when the user is
logged in:

{% block right_tabs %}
 {% if user.is_authenticated %}
 <ul class="tabs">{% spaceless %}
 <li id="tab_profile">Profile
 <li id="tab_blogs">Blogs
 <li id="tab_bookmarks">Bookmarks
 {% endspaceless %}
 {% endif %}
{% endblock %}

Note that each li is given an id specific to the tab, e.g. tab_bookmarks
for the bookmarks tab.

Now, any page under the bookmarks tab extends the template
bookmarks/base.html which looks something like this:

{% extends "site_base.html" %}

{% block body_class %}bookmarks{% endblock %}

{% block subnav %}

 Add Bookmark
 Your Bookmarks
 All Bookmarks

{% endblock %}

Notice that this bookmarks-specific base template defines the subnav
block which provides the subnav for all bookmarks pages.

It also defines the body_class block we saw used by the global base.html.

Now all that remains is the CSS that ties the body in base.html
with class="bookmarks” to the li in site_base.html that has
id="tab_bookmarks".

This is done in CSS.

/* SITE-SPECIFIC TAB STYLING */

body.profile #tab_profile a,
body.blogs #tab_blogs a,
body.bookmarks #tab_bookmarks a
{
 color: #000; /* selected tab text colour */
}
body.profile #tab_profile,
body.blogs #tab_blogs,
body.bookmarks #tab_bookmarks
{
 margin: 0; /* to compensate for border */
 padding: 5px 0 5px;
 background-color: #DEF; /* selected tab colour */
 border-left: 1px solid #000; /* tab border */
 border-top: 1px solid #000; /* tab border */
 border-right: 1px solid #000; /* tab border */
}

Notice that the selector body.bookmarks #tab_bookmarks appears twice.

0.5.1

The 0.5.1 release brings various bug fixes and more stability to Pinax. We have fixed some
bugs and improved the documentation. This release should be backward compatible, except
where noted.

Python 2.4 support

0.5.1 brings Python 2.4 compatibility. There are still many distributions out there that
have Python 2.4 as the default Python version.

Removal of Pownce support

Pownce closed their doors on December 15, 2008 after being bought by Six Apart. There is no
longer any reason we should support Pownce.

You may need to remove some Pownce bits from your templates if you forked from the
complete_project locally.

Various bug-fixes

	r1292 [http://code.pinaxproject.com/codebases/codebase/pinax/changesets/1292/] Fixed a bug in django_openidconsumer that prevented login on some deployments

	r1288 [http://code.pinaxproject.com/codebases/codebase/pinax/changesets/1288/] Removed an import that was never used in profiles/views.py.

	r1283 [http://code.pinaxproject.com/codebases/codebase/pinax/changesets/1283/] Issue #131 [http://code.google.com/p/django-hotclub/issues/detail?id=131] Added a missing datetime import in apps/local_apps/projects/forms.py.

	r1266 [http://code.pinaxproject.com/codebases/codebase/pinax/changesets/1266/] Fixed a typo of ValidationError in apps/local_apps/account/forms.py.

	r1215 [http://code.pinaxproject.com/codebases/codebase/pinax/changesets/1215/] Issue #119 [http://code.google.com/p/django-hotclub/issues/detail?id=119] Added a missing import in apps/local_apps/misc/utils.py.

	r1193 [http://code.pinaxproject.com/codebases/codebase/pinax/changesets/1193/] Added the about app to the basic_project INSTALLED_APPS list.

Pinax Release Notes

	0.5.1

 _static/up-pressed.png

_images/admin_sites_change.jpg
000 Change site | Django site admin

[4[> | [+ [@ nhttp://localhost:8000/adminysites site/ 1/ ¢] (@ Google D)

Home > Sites > Sites > example.com -
Change site Hstot| e
(=]

Domain name: | example.com

Display name: | example.com

*Delee Soveant a6 st Save and conius o] EEY

_static/up.png

_images/admin_mailer_messages.jpg
000 Select message to change | Django site admin
| 4 » || + @ hutp://localhost:8000/admin/mailer/message/ ¢] (@ Google)

Welcome, brian. Change password / Log out

Home > Mailer » Messages

=
(=]
Select message to change)
D & Toaddress Subject When added Q
1 someone@example.com Confirm email address for example.com Oct. 26, 2009, 9:33 p.m. high
1 message

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Pinax’s documentation

 		
 Introduction

 		
 Features

 		
 History and Background

 		
 Installation

 		
 Installing Pinax

 		
 Activating the virtualenv

 		
 Starting a new Pinax project

 		
 What’s next?

 		
 Customization

 		
 Choosing a Project

 		
 pinax-admin clone_project

 		
 Settings You Will (Possibly) Want To Override

 		
 base.html versus site_base.html

 		
 Changing Avatar/Gravatar defaults

 		
 Adding Tabs

 		
 Deployment

 		
 Using mod_wsgi

 		
 Using mod_python

 		
 Sending Mail and Notices

 		
 Media files

 		
 Media Handling

 		
 Basic media handling

 		
 Locations of media files

 		
 build_media management command

 		
 resolve_media management command

 		
 Serving static files during development

 		
 Group support

 		
 Writing your own group aware domain objects

 		
 Models

 		
 Views

 		
 URLs

 		
 Writing your own group app

 		
 Hooking up content objects

 		
 Settings

 		
 ACCOUNT_OPEN_SIGNUP

 		
 BBAUTH_APP_ID

 		
 BBAUTH_SHARED_SECRET

 		
 BEHIND_PROXY

 		
 COMBINED_INBOX_COUNT_SOURCES

 		
 EMAIL_CONFIRMATION_DAYS

 		
 FEEDUTIL_SUMMARY_LEN

 		
 FORCE_LOWERCASE_TAGS

 		
 LOGIN_REDIRECT_URLNAME

 		
 NOTIFICATION_LANGUAGE_MODULE

 		
 PINAX_ITEMS_PER_FEED

 		
 PINAX_ROOT

 		
 PINAX_THEME

 		
 RESTRUCTUREDTEXT_FILTER_SETTINGS

 		
 SERVE_MEDIA

 		
 STATICFILES_DIRS

 		
 STATICFILES_PREPEND_LABEL_APPS

 		
 STATICFILES_MEDIA_DIRNAMES

 		
 URCHIN_ID

 		
 MARKUP_CHOICES

 		
 WIKI_REQUIRES_LOGIN

 		
 Dependencies

 		
 FAQ

 		
 Does Pinax work on Django 1.1?

 		
 Does Pinax work on Django 1.2?

 		
 How do I change the references to example.com

 		
 Why won’t my e-mail send?

 		
 Contributing

 		
 Getting started

 		
 Grabbing the source code

 		
 Setting up your environment

 		
 Committing code

 		
 Writing commit messages

 		
 External Apps

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

